Possible MIFE applications
Plant physiology (stress; adaptation; mineral nutrition; photosynthesis; long-distance transport; growth & development; water relations; osmoregulation; hormonal physiology; stomatal physiology; plant movements)
Cell biology (signaling; perception; elicitors)
Ecophysiology (plant responses to abiotic and biotic factors)
Biophysics (properties of ion channels and transporters)
Developmental biology (morpho- and embriogenesis; polarity)
Functional genomics (in planta studies of specific gene functions; heterologous expression systems)
Agronomy and plant breeding (plant screening for environmental fitness)
Soil science (soil-root interface; heavy metal toxicity; remediation)
Soil science (soil-root interface; heavy metal toxicity; remediation)
Marine biology (algae; phytoplankton; marine biofilms and mats; sediments)
Bryology (physiology and development)
Mycology (factors controlling growth and development)
Food microbiology (effect of food-related treatments on bacteria; food preservation studies; interrelation of pathogenic and probiotic bacteria; biofilms)
Medical microbiology (pathogenic bacteria; bacterial physiology an genetics; host-pathogen interactions)
Environmental microbiology (functional genomics; bioremediation; environmental physiology)
Medical research (screening of new drugs; physiology; pathology)
Human and animal physiology (receptors; signaling; homeostasis)
Toxicology (receptors; selectivity and action spectrum; molecular targets)
1984 年,康奈尔大学 Lucas 教授提出了 用缓慢振动的离子选择性电极来无损测定净离子流 的想法,其主要理论是: 通过微电极测定溶液中生物组织两个位置间的离子浓度梯度( 严格来说是电化学势差) ,进而根据梯度计算目标离子的跨膜净通量.之后,该理论在玉米根系 H+ 和 K+ 通量的化学计量测定上得到了实践证明. 1995 年,美国伍 兹霍尔研究所将振动探针设备进行改造,使其具备离子流能力. 与此同时,澳大利亚塔斯马 尼亚大学的 Newman在前人的理论基础上对非损伤性微测技术进一步发展,发明出微电极离子流技术( MIFE,microelectrode ion flux estimation) .能准确地测定单细胞或完整植株特定微 区细胞内外离子浓度与流动方向.它具有高灵敏度、实时、非损伤性、分辨率高、噪值小等特点,而且还可 以在电脑控制下不间断测定与自动监测,实现了生 物体内外离子或分子信息的同步测定.