教育装备采购网
第七届图书馆 校体购1

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

教育装备采购网 2024-03-04 16:27 围观2411次

  德国INTERHERENCE公司开发的超精准可调节温度控制模块VAHEAT是一款用于光学显微镜的精密温度控制模块,技术来源于德国著名的马克斯-普朗克研究所(MPI),兼容市面上绝大多数的商用显微镜和物镜,可在高清成像的同时快速和精确地调节温度,加热速率可达100℃/s最高温度可达200℃,稳定性0.01℃,是材料研究领域必备工具。该模块自2021年问世以来,已在《Journal of the American Chemical Society 》《Small 》《EMBO Journal 》《Nature Communications 》《Nature Methods 》《Nature Nanotechnology 》等高水平期刊发表数篇文献。

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

图1 VAHEAT实物图

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

图2 A: VAHEAT各部件名称

B: VAHEAT配有容纳液体样品的智能基板,可安装在显微镜上

C: VEAHEAT智能基板含有氧化铟锡(ITO)加热元件和温度探头

  VAHEAT主要特点:

  ☛ 温度稳定性高:0.01℃

  ☛ 温控范围广:RT-200℃

  ☛ 优越的成像质量

  ☛ 快速且可靠,用于油浸物镜

  ☛ 四种加热模式可根据用户需求进行不同的实验

  ☛ 机械稳定性和设备兼容性

  ☛ 便于携带和安装

  VAHEAT兼容多种成像技术:

  ☛ 全内反射显微镜 Total internal reflection microscopy (TIRM)

  ☛ 原子力显微镜 Atomic force microscopy (AFM)

  ☛ 共聚焦显微镜 Confocal microscopy

  ☛ 超分辨显微镜 Super resolution methods (SIM, STORM, PALM, PAINT, STED)

  ☛ 干涉散射显微镜 Interferometric scattering microscopy (iSCAT)

  ☛ 宽场显微镜 Widefield microscopy

  VAHEAT典型案例:

  ■ 2D材料的光致发光动态相变

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  犹他大学的Connor Bischak实验室使用超精准可调节温度控制模块VAHEAT获得了从40°C升高到110°C再降低到40°C,速度为0.2°C/s的光致发光(PL)数据。

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  参考文献:Rand L. Kingsford …& Connor G. Bischakd. (2023) Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying.Journal of the American Chemical Society, 145, 11773-11780.

  ■ 纳米颗粒的iSCAT成像

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  马克斯普朗克光科学研究所的Vahid Sandoghdar实验室致力于研究干涉散射(iSCAT)显微技术,他们使用超精准可调节温度控制模块VAHEAT调整30 nm的金纳米颗粒的温度并检测扩散系数,所得测量结果与使用金纳米颗粒的流体力学直径(实线)计算出的扩散系数基本一致。

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  参考文献:Anna D. Kashkanova …& Vahid Sandoghdar. (2022) Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 19, 586-593.

  ■ AlGaN温感发光研究

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  华东师范大学武鄂教授使用超精准可调节温度控制模块VAHEAT对单光子发射源(SPE)在AlGaN微柱中的温度依赖性进行了研究。文章针对SPE在不同温度下的PL光谱、PL强度、辐射寿命等参数,探究了AlGaN SPE在高温下线宽加宽的可能机制,有助于深入研究如何实现此材料在高温下工作的芯片集成应用。

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  参考文献:Yingxian Xue …& E Wu. Temperature-dependent photoluminescence properties of single defects in AlGaN micropillars. Nanotechnology, 34, 225201.

  ■ 高温条件下黑金薄膜的拉曼光谱

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  德国柏林亥姆霍兹中心(HZB)的Yan Lu教授和波茨坦大学的Sergio Kogikoski教授使用超精准可调节温度控制模块VAHEAT测量了从室温到122°C不同温度下黑金薄膜的拉曼光谱。本实验用低强度激光入射(100 μW)测量拉曼光谱,以通过温度而不是光照射来诱导反应。

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  参考文献:Radwan M. Sarhan …& Yan Lu. (2023) Colloidal Black Gold with Broadband Absorption for Plasmon-Induced Dimerization of 4-Nitrothiophenol and Cross-Linking of Thiolated Diazonium Compound.Journal of Physical Chemistry C, https://doi.org/10.1021/acs.jpcc.3c00067.

  VAHEAT部分客户:

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  VAHEAT部分发表文献:

  1. Rand L. Kingsford …& Connor G. Bischakd. (2023) Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying. Journal of the American Chemical Society, 145, 11773−11780.

  2. Fan Hong …& Peng Yin. (2023) Thermal-plex: fluidic-free, rapid sequential multiplexed imaging with DNA-encoded thermal channels. Nature Methods, Mai P. Tran …& Kerstin Göpfrich. (2023) A DNA Segregation Module for Synthetic Cells. Small, 19, 2202711.

  3. Anna D. Kashkanova …& Vahid Sandoghdar. (2022) Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 19, 586–593.

  4. Pierre Stömmer …& Hendrik Dietz. (2021) A synthetic tubular molecular transport system. NATURE COMMUNICATIONS, 12, 4393.

  5. Bas W. A. Bögels …& Tom F. A. de Greef. (2023) DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access. Nature Nanotechnology, 18, 912–921.

  6. Tugce Oz …& Wolfgang Zachariae. (2022) The Spo13/Meikin pathway confines the onset of gamete differentiation to meiosis II in yeast. EMBO Journalhttps://doi.org/10.15252/embj.2021109446.

  7. Valentina Mengoli …& Wolfgang Zachariae. (2021) Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. EMBO Journalhttps://doi.org/10.15252/embj.2020106812.

  8. Mariska Brüls …& Ilja K. Voets. (2023) Investigating the impact of exopolysaccharides on yogurt network mechanics and syneresis through quantitative microstructural analysis. Food Hydrocolloidshttps://doi.org/10.1016/j.foodhyd.2023.109629.

  9. Yingxian Xue …& E Wu. Temperature-dependent photoluminescence properties of single defects in AlGaN micropillars. Nanotechnology, 34, 225201.

  10. https://doi.org/10.1038/s41592-023-02115-3.

  11. Radwan M. Sarhan …& Yan Lu. (2023) Colloidal Black Gold with Broadband Absorption for Plasmon-Induced Dimerization of 4-Nitrothiophenol and Cross-Linking of Thiolated Diazonium Compound. Journal of Physical Chemistry Chttps://doi.org/10.1021/acs.jpcc.3c00067.

  12. Maëlle Bénéfice …& Guillaume Baffou. (2023) Dry mass photometry of single bacteria using quantitative wavefront microscopy. Biophysical Journalhttps://doi.org/10.1016/j.bpj.2023.06.020

  13. Jaroslav Icha, Daniel Böning, and Pierre Türschmann. (2022) Precise and Dynamic Temperature Control in High-Resolution Microscopy with VAHEAT. Microscopy Today, 30(1), 34–41.

  14. L. Birchall …& C.J. Tuck. (2022) An inkjet-printable fluorescent thermal sensor based on CdSe/ZnS quantum dots immobilised in a silicone matrix. Sensors and Actuators: A. Physical, 347, 113977.

  15. Rajyalakshmi Meduri …& David S. Gross. (2022) Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density. JOURNAL OF BIOLOGICAL CHEMISTRY, 298(10), 102365.

  16. Marleen van Wolferen …& Sonja-Verena Albers. (2022) Progress and Challenges in Archaeal Cell Biology. Archaea. Methods in Molecular Biology, 2522, 365–371.

  17. Wei Liu …& Andreas Walther. (2022) Mechanistic Insights into the Phase Separation Behavior and Pathway-Directed Information Exchange in all-DNA Droplets. Angewandte Chemie, 134, e202208951.

  18. Céline Molinaro …& Guillaume Baffou. (2021) Are bacteria claustrophobic? The problem of micrometric spatial confinement for the culturing of micro-organisms. RSC Advances, 11, 12500–12506.

  19. SadmanShakib …& GuillaumeBaffou. (2021) Microscale Thermophoresis in Liquids Induced by Plasmonic Heating and Characterized by Phase and Fluorescence Microscopies. Journal of Physical Chemistry C, 125, 21533−21542.

  为了更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了VAHEAT超精准可调节温度控制模块,为您提供样品测试、样机体验等机会,欢迎各位老师垂询!

连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!

  相关产品:

  1.超精准可调节温度控制模块-VAHEAT:https://www.caigou.com.cn/product/202305061581.shtml

点击进入QUANTUM量子科学仪器贸易(北京)有限公司展台查看更多 来源:教育装备采购网 作者:Quantum量子科学仪器贸易(北京)有限公司 责任编辑:逯红栋 我要投稿
校体购终极页

相关阅读

版权与免责声明:

① 凡本网注明"来源:教育装备采购网"的所有作品,版权均属于教育装备采购网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:教育装备采购网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:XXX(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

校体购产品