近日,强冷空气在山西、宁夏和陕西等地凶猛登陆,带来了降温降雪的天气。除了突如其来的降雪,大自然赋予的特殊天气,还有极端而持续的干旱。在干旱区,由于水资源缺乏,植物的生存和生长受到严重胁迫,促使生态环境进一步恶化。
为了应对干旱气候,治理生态环境,相关的研究数不胜数。基于干旱区河岸湿地这一特殊的生态系统,今天我们来了解一篇研究植物水分利用模式的论文。
干旱区河岸湿地优势种植物的水分利用模式
植物水分循环是研究陆地生态水文学的关键环节。在干旱区,由于有限降水和强烈蒸发,水资源是影响植物生存、生长和植被恢复可持续性的重要限制因素。近年来,由于高温和干旱等极端天气事件更加频繁,土地退化加剧,使河岸湿地生态系统面临降水减少、不同程度水位下降等干旱问题。极端干旱会降低水资源的可利用性和植被生产力,并给植物带来不可逆转的死亡风险。因此,了解植物水分利用模式可以揭示植物的生存策略和对不断变化的水文气候条件的反应,这是良好的生态管理和植被恢复的先决条件。湿地是连接水域生态系统和陆地生态系统的功能过渡区,其生态功能非常突出。因此,定量研究河岸湿地水分来源、补给途径及其植物水分利用模式,是了解湿地生态水文循环的前提条件,将为干旱区湿地环境治理和生态安全提供理论依据与决策支持。
干旱区是全球生态系统的的重要组成部分,河岸湿地具有水源供给、水文调节和土壤保持等生态功能。研究人员选取干旱区典型河岸湿地的优势种植物为研究对象,测定了降水、土壤水、木质部水和地下水的氢氧稳定同位素组成(利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和木质部中的水分),利用这些数据拟解决以下问题:(1)阐明优势种植物水分利用模式的季节变化;(2)明确两种优势种植物水分利用模式的差异。本研究将有助于了解河岸湿地生态系统中植物-土壤-水关系的机制,旨在为干旱区河岸湿地生态系统恢复与重建提供理论依据与决策支撑。
图1 (a)和(b)代表研究区域及采样点空间分布。(c)为东滩湿地,(d)为旱柳,(e)为紫翅猪毛菜。
【结果】
图2 紫翅猪毛菜(a)和旱柳(b)0-100 cm土壤水中δD和δ18O值的季节变化。垂直虚线表示木质部水的同位素组成。误差条表示标准误差。
图3 潜在水源对猪毛菜(a)和旱柳(b)贡献百分比的月变化。
图4 水体氢氧稳定同位素组成的关系。图中还显示了全球大气水线(GMWL,红色虚线)、局地大气水线(LMWL,黑色虚线)和土壤水线(SWL,黑色虚线)。(a)、(b)为紫翅猪毛菜,(c)、(d)为旱柳。
图5 潜在水源对紫翅猪毛菜和旱柳水分来源贡献。
【结论】
水分来源及其植物水分利用模式是决定湿地植物区系组成、种群分布格局的关键因子,已成为干旱区受损湿地植被保护与恢复急需解决的关键问题。因此,本文基于稳定同位素技术研究降水、土壤水、植物水和地下水的同位素组成,探究不同水分来源对河岸湿地植物水分利用的贡献率。土壤水、植物水和地下水都位于大气降水线附近,说明降水对各水源均有补给作用,但并不显著。在该研究区,草地土壤蒸发强度大于林地。地表蒸发影响0-60cm土壤水,大于80cm的土壤水与地下水存在水力联系。Iso-Source结果表明,紫翅猪毛菜主要利用0-60 cm土壤水,对地下水利用率较低,平均值仅为7.14%。降水对紫翅猪毛菜的贡献比例存在显著差异(10.3%-46.5%)。9月份降水对紫翅猪毛菜吸水贡献率最大,这与9月份的降水高峰有关。持续从浅层土壤获取水分的紫翅猪毛菜可能难以在极端干旱条件下生存。旱柳表现出明显的吸水模式,主要利用20-100cm土壤水和地下水。随着季节的推移,其水源逐渐从浅层转变为深层,表明旱柳对于水分利用具有较强的可塑性和适应性。然而,由于旱柳能够持续从深层土壤和地下水中获取水分,因此可能减弱湿地水土保持能力,造成生态负面影响。建议减少种植密度,进行适量灌溉,有利于旱柳在干旱环境中的最佳生长。今后在干旱地区进行人工湿地植被恢复和重建中,应选择根系分布不一致的树种进行混交栽植,以合理利用水资源、维持湿地生态系统的稳定性。研究结果将有助于更好地了解植被恢复计划(人工林地和天然草地)对干旱区河岸湿地水文过程的影响,并为植物物种选择和水资源管理提供参考依据。