教育装备采购网
第七届图书馆 校体购1

MC1000藻类培养与监测系统文献列表

教育装备采购网 2022-05-05 09:38 围观569次

MC 1000 8通道藻类培养与在线监测系统文献列表

(2020年-2022年2月)

  1.Jia M,et al. 2022.The bHLH family NITROGEN-REPLETION INSENSITIVE1 represses nitrogen starvation-induced responses in Chlamydomonas reinhardtii. The Plant Journal. doi: 10.1111/tpj.15673.

  2.Széles E, et al. 2022. Microfluidic Platforms Designed for Morphological and Photosynthetic Investigations of Chlamydomonas reinhardtiion a Single-Cell Level. Cells 11(2):285.

  3.Pessi BA, et al. 2022. Does temperature shift justify microalgae production under greenhouse? Algal Research 61: 102579.

  4.Ben-SA, Vonshak A. 2022. Tolerance to exogenously added ROS examined for correlation with enhanced specific growth rates of Arthrospira platensis. Journal of Applied Phycology. doi: 10.1007/s10811-022-02688-0.

  5.Fettah N,et al. 2022. Effect of light on growth of green microalgae Scenedesmus quadricauda: influence of light intensity, light wavelength and photoperiods. International Journal of Energy and Environmental Engineering. doi:10.1007/s40095-021-00456-3.

  6.Admirasari R, et al. 2022. Nutritive capability of anaerobically digested black water increases productivity of Tetradesmus obliquus: Domestic wastewater as an alternative nutrient resource. Bioresource Technology Reports 17: 100905.

  7.Dann  M, et al. 2021. Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nature Plants 7: 681–695.

  8.Huokko T, et al. 2021. Probing the biogenesis pathway and dynamics of thylakoid membranes. Nature Communications 12: 3475.

  9.Lin JY, Ng IS. 2021. Production, isolation and characterization of C-phycocyanin from a new halo-tolerant Cyanobacterium aponinum using seawater. Bioresource technology 342: 125946.

  10.Kona R, et al. 2021. Lutein and β-carotene biosynthesis in Scenedesmussp. SVMIICT1 through differential light intensities. Bioresource technology 341:125814.

  11.Shabestary K, et al. 2021. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metabolic engineering 68: 131-141.

  12.Spät P, et al. 2021. Alterations in the CO2availability induce alterations in the phosphoproteome of the cyanobacterium Synechocystissp. PCC 6803. New Phytologist 231: 1123-1137.

  13.Billey E,et al. 2021. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Plant Physiology 185(3): 815-835.

  14.Bandyopadhyay A, et al. 2021. Antenna Modification Leads to Enhanced Nitrogenase Activity in a High Light-Tolerant Cyanobacterium. Mbio 12(6): e03408-21.

  15.Chen H, et al. 2021. A Novel Mode of Photoprotection Mediated by a Cysteine Residue in the Chlorophyll Protein IsiA. mBio 12(1).

  16.Liu X, et al. 2021. Chlorophyll fluorescence as a light signal enhances iron uptake by the marine diatom Phaeodactylum tricornutumunder high-cell density conditions. BMC biology 19(1): 1-15.

  17.Cecchin M, et al. 2021. CO2supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorellaspecies. Plant, Cell & Environment 18(2): 431842.

  18.Lin JY, et al. 2021. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcussp. PCC7002 for antioxidation, antibacterial and lead adsorption. Environmental Research 206: 112283.

  19.Battaglino B, et al. 2021. Channeling Anabolic Side Products toward the Production of Nonessential Metabolites: Stable Malate Production in Synechocystissp. PCC6803. ACS Synthetic Biology 10(12): 3518-3526.

  20.Ben SA, et al. 2021. Characterization of nannochloropsisoceanicarose bengal mutants sheds light on acclimation mechanisms to high light when grown in low temperature. Plant and Cell Physiology 62(9): 1478-1493.

  21.Gachelin M, et al. 2021. Enhancing PUFA-rich polar lipids in Tisochrysis luteausing adaptive laboratory evolution (ALE) with oscillating thermal stress. Applied Microbiology and Biotechnology 105: 301-312.

  22.Pivato M, et al. 2021. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. Algal Research 55(16):102255.

  23.Busnel A, et al. 2021. Development and validation of a screening system for characterizing and modeling biomass production from cyanobacteria and microalgae: Application to Arthrospira platensisand Haematococcus pluvialis. Algal Research 58: 102386.

  24.Guljamow A, et al. 2021. Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosaPCC 7806. Microorganisms 9(6): 1265.

  25.Barera S, et al. 2021. Effect of lhcsrgene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtiicultures. Journal of Biotechnology 328: 0168-1656.

  26.Canizales S, et al. 2021. Cyanobacterial growth and cyanophycin production with urea and ammonium as nitrogen source. Journal of Applied Phycology 33 (6): 3565-3577.

  27.Dixit RB, et al. 2021. Secretomics:A Possible Biochemical Foot Printing Tool in Developing Microalgal Cultivation Strategies.World Journal of Microbiology and Biotechnology 37(11):1-11.

  28.Zhao L, et al. 2020. Structural variability, coordination and adaptation of a native photosynthetic machinery. Nature Plants 6(7): 869–882.

  29.Yao L,et al.. 2020. Pooled CRISPRi screening of the cyanobacterium Synechocystissp PCC 6803 for enhanced industrial phenotypes. Nature Communications 11(1): 1666.

  30.Lfb A, et al. 2020. Metabolic engineering of Synechocystissp. PCC 6803 for the production of aromatic amino acids and derived phenylpropanoids. Metabolic Engineering 57:129-139.

  31.Perozeni F, et al. 2020. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Plant Biotechnology Journal 18(10) : 2053-2067.

  32.Shrameeta S, et al. 2020. Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria1. Plant Physiology 182(1):507-517.

  33.Flamholz AI,et al. 2020. Functional reconstitution of a bacterial CO2concentrating mechanism in Escherichia coli. eLife9: e59882.

  34.Iasimone F, et al. 2020. Bioflocculation and settling studies of native wastewater filamentous cyanobacteria using different cultivation systems for a low-cost and easy to control harvesting process. Journal of Environmental Management 256(15): 109957.

  35.Wu W, et al. 2020. Using osmotic stress to stabilize mannitol production in Synechocystissp. PCC6803. Biotechnology for Biofuels 13(1) : 879-891.

  36.Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsisgaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(1): 1-14.

  37.Nzayisenga, JC,et al. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels 13(284): 1179-1184.

  38.Gupta JK, et al. 2020. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcussp. PCC 7002 increases growth rate and glycogen accumulation. Biotechnology for Biofuels 13(1): 1-12..

  39.Sengupta S, et al. 2020. Metabolic engineering of a fast-growing cyanobacteriumSynechococcuselongatus PCC11801 for photoautotrophic production of succinic acid. Biotechnology for Biofuels 13(1): 539-554.

  40.Kareya MS, et al. 2020. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO2in Microchloropsis gaditanaNIES 2587. Frontiers in Plant Science 11: 981.

  41.Alvarenga D, et al. 2020. AcnSP – A Novel Small Protein Regulator of Aconitase Activity in the Cyanobacterium Synechocystissp. PCC 6803. Frontiers in Microbiology 11: 1445.

  42.Minhas AK, et al.2020. Microalga Scenedesmus bijugus: Biomass, lipid profile, and carotenoids production in vitro. Biomass and Bioenergy 142: 105749.

  43.Alessandra B,et al. 2020. Photosynthesis Regulation in Response to Fluctuating Light in the Secondary Endosymbiont Alga Nannochloropsis gaditana. Plant & Cell Physiology 61(1): 41-52.

  44.Ahmad A, et al. 2020. Biochemical Characteristics and a Genome-Scale Metabolic Model of an Indian Euryhaline Cyanobacterium with High Polyglucan Content. Metabolites10(5):177.

  45.Sengupta A, et al. 2020. Photosynthetic Co-Production of Succinate and Ethylene in A Fast

  -Growing Cyanobacterium, Synechococcus elongatusPCC 11801. Metabolites 10(6): 250.

  46.Munz J, et al. 2020. Arginine-fed cultures generates triacylglycerol by triggering nitrogen starvation responses during robust growth in Chlamydomonas. Algal Research 46: 101782.

  47.Weiner I, et al. 2020. CSO -A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. Algal Research 46: 101788.

  48.Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis(Rhodophyta): evidence from transcriptomics and biochemical data. BMC Plant Biology 20(1): 424.

  49.Li YX,et al. 2020. Transcriptome analysis of carotenoid biosynthesis in Dunaliella salinaunder red and blue light. Journal of Oceanology and Limnology 38(1):177-185.

  50.Dienst D,et al. (2020). High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystissp. PCC 6803. Scientific Reports10(1): 5932.

  51.Pathania R, et al. 2020. Synechococcus elongatusBDU 130192, an Attractive Cyanobacterium for Feedstock Applications: Response to Culture Conditions. BioEnergy Research. 14(3): 954-963.

  52.Varshney P, et al. 2020. Effect of elevated carbon dioxide and nitric oxide on the physiological responses of two green algae, Asterarcys quadricellulareand Chlorella sorokiniana. Journal of Applied Phycology 32(1): 189-204.

  53.Vonshak A,et al. 2020. Photosynthetic characterization of two Nannochloropsisspecies and its relevance to outdoor cultivation. Journal of Applied Phycology 32(2): 909-922.

  54.Akma C, et al. 2020. Two-phase method of cultivating Coelastrellaspecies for increased production of lipids and carotenoids. Bioresource Technology Reports 9: 100366.

  55.Valev D,et al. 2020. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Current Microbiology 77(8) : 1590-1599.

点击进入北京易科泰生态技术有限公司展台查看更多 来源:教育装备采购网 作者:北京易科泰生态技术有限公司 责任编辑:逯红栋 我要投稿
校体购终极页

相关阅读

  • 陕西渭南市开展2022年“千园达标”市级核查验收工作
    渭南市教育局12-30
    “千园达标”工程是陕西省渭南市学前教育普及普惠督导评估工作的重要抓手,是引领全市幼儿园规范办园行为、促进园所内涵发展的有力举措。近日,渭南市政府教育督导委员会办公室组织学前教育专家...
  • 宝鸡市千阳县“双减”经验全省推广
    宝鸡市教育局11-18
    “双减”实施一年来,陕西省宝鸡市千阳县严格落实,积极推进,持续巩固提高“双减”工作水平。2022年11月14日,《陕西省“双减”工作动态》第30期刊发了千阳县扎实推进“作业革命”,减轻学生课...
  • 陕西蒲城县推进“千园达标”县级督导评估问题整改落实
    陕西省教育厅06-22
    为进一步加快“千园达标”创建工作,陕西省蒲城县人民政府教育督导委员会办公室多措并举推进县级督导评估问题整改落实。提高认识促推进。蒲城县充分认识“千园达标”创建工作在推进县域学前教育...
  • 依托现代科技手段解决纸质文献酸化问题

    依托现代科技手段解决纸质文献酸化问题
    教育装备采购网06-16
    我国拥有悠久的历史文明,其中一个重要的例证就是大量的古籍、档案等纸质文献。这些纸质文献记录了先民在长期实践中获得的智慧结晶和世事变迁,是社会...
  • 汉龙实业|我们的业务范围是?

    汉龙实业|我们的业务范围是?
    教育装备采购网06-08
    北京市汉龙实业有限公司主营业务包括专业非接触式书刊扫描仪、高精度古籍扫描仪、不拆卷案卷扫描仪、大幅面仿真复制扫描仪、缩微胶片拍摄机、缩微胶片...
  • 陕西渭南市以“千园达标”为抓手加快学前普及普惠创建步伐
    陕西省教育厅04-21
    2022年以来,陕西省渭南市紧盯“教育强市”重点任务,按照学前教育普及普惠四个维度(普及普惠水平、政府保障情况、幼儿园保教质量、社会认可)要求,以“千园达标”为抓手,通过目标导向、问题...
  • 走进汉龙文献保护中心文献修复室

    走进汉龙文献保护中心文献修复室
    教育装备采购网03-15
    汉龙文献保护中心正式成立于2016年,坐落在北京市历史底蕴悠长、文化氛围浓厚的东城区炮局胡同,毗邻藏传佛教圣地雍和宫,占地面积五百平米。目前,汉...
  • 陇东学院举行王珏先生图书文献捐赠仪式

    陇东学院举行王珏先生图书文献捐赠仪式
    甘肃省教育厅10-13
    10月9日,上海市艺术家王珏先生向陇东学院捐赠了《新民晚报》等珍贵文献。陇东学院党委书记曹复兴出席仪式并讲话,党委委员、副院长白生君主持仪式。王...

版权与免责声明:

① 凡本网注明"来源:教育装备采购网"的所有作品,版权均属于教育装备采购网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:教育装备采购网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:XXX(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

校体购产品