【期刊】
Nature Biomedical Engineering IF=25.7
DOI:https://doi.org/10.1038/s41551-021-00833-7
【成果简介】
由于许多疾病相关生物标志物的浓度超低,所产生的信号往往会被其他高浓度分子所产生的信号所干扰,因此从生物流体中进行超低浓度样品(每100 μL中有1到10份)的检测一直是医学/生物分析领域的一个难题。近日,复旦大学魏大程教授课题组使用小型台式无掩膜光刻机- MicroWriter ML3制备了基于石墨烯场效应管的分子微纳机电芯片解决了这一难题。所制备的芯片实现了对低浓度离子,生物分子和新冠病毒(每100 μL中有1到2份)的快速检测。使用该芯片对新冠病毒进行检测时,仅需鼻咽样本即可,无需RNA提取和核酸扩增,四分钟内就可得到检测结果。相关研究论文已在国际知名期刊《Nature Biomedical Engineering》(IF=25.7)上发表。
【图文导读】
图(1) 分子微纳机电和基于石墨烯场效应管的微纳机电芯片示意图。A)分子微纳机电芯片示意图。B) 分子微纳机电探针在不同静电场中工作原理示意图。探针与作为悬臂梁的单链DNA相连,然后被一个由双链DNA所组成的四面体结构固定在石墨烯表面。E为外加电场方向。C)基于液态门石墨烯场效应管的微纳机电芯片示意图。D)使用小型台式无掩膜光刻机- MicroWriter ML3制备器件的数码照片。E) 小型台式无掩膜光刻机- MicroWriter ML3制备电的光学显微照片。F)制备后的石墨烯表面的AFM表面成像结果。G)-I)不同外加电场条件下,单链DNA的荧光表征结果。
图(2)超灵敏生物探测系统和芯片稳定性结果。A) Vlg为-0.5V条件下和B) Vlg为0V条件下实时ΔIds的变化曲线。C)不同Vlg下,ΔIds随着凝血酶浓度的变化。D)分子微纳机电部分探测原理。由于探针较高的表面覆盖率,通过探针对特定目标进行特定吸附,避免了非特定吸附,然后再转换为不同电信号。E)制备芯片的ΔIds/ΔIds0随着时间的变化。
图(3)芯片的通用性,特性和结构设计。A) ∣ΔIds/ΔIds0∣曲线随着不同检测样品浓度的变化。B) ΔIds/ΔIds0随着ATP浓度的变化。C)制备芯片对选定样品和非选定样品不同的∣ΔIds/ΔIds0∣结果。D)DNA四面体示意图。E)不同的DNA结构对狄拉克点位移的影响。
图(4)新冠病毒的核酸检测。A)使用制备芯片和传统PCR法进行核酸检测的工作流程。B)用于探测和样品选定的基因序列图。C)∣ΔIds/ΔIds0∣曲线随着不同检测样品浓度的变化。插图中展示了检测的灵敏度。D) ∣ΔIds/ΔIds0∣随着不同样本的改变。F1为PCR检测为阴性的1号样本。P1为PCR检测为阳性的1号样本。插图中展示了芯片对25个阳性样本的平均反应时间。E) 芯片对新冠感染者,普通发烧和流感患者以及健康人群的检测结果。F) ΔIds/ΔIds0对不同浓度样品的反应时间。插图为在样品采集后0-21天时间内的表征结果。G)制备的芯片和传统PCR法对样品检测灵敏度的比较。H) 通过和其他测试新冠病毒方法的比较,说明制备的芯片检测新冠病毒更快更灵敏。
【结论】
魏大程教授课题组使用小型台式无掩膜光刻机- MicroWriter ML3制备基于石墨烯场效应管的分子微纳机电芯片在检测离子,生物分子和新冠病毒等方面具有快速超高灵敏度等特点。该工作为医学/生物快速诊断领域的研究打下了坚实的基础。同时,从文中也可以看到随着医学/生物检测领域的需求逐渐增多,如何快速开发出符合需求的生物芯片显得十分重要性。由于实验过程中需要及时修改相应的参数,得到优化的实验结果,十分依赖灵活多变的光刻手段。小型台式无掩膜光刻机- MicroWriter ML3可以任意调整光刻图形,帮助用户快速实现原型芯片的开发,助力医学/生物检测领域的研究。
相关产品
1、小型台式无掩膜光刻机- MicroWriter ML3