改进积雪密度的估计是目前雪研究的一个关键问题。表征密度时空变异性对于水当量的估算、水力发电和自然灾害(雪崩洪水等)的评估至关重要。高光谱成像是一种监测和估计其物理特性的有前途且可靠的工具。事实上,雪的光谱反射率在一定程度上受其物理特性变化的控制,尤其是在光谱的近红外(NIR)部分。为此,已经设计了几种模型根据光谱信息估算积雪密度。然而,还没有一个实现满意的结果。主要困难之一是积雪密度和光谱反射率之间的关系是非双射的(满射的)。事实上,几个反射振幅与相同的密度相关,反之亦然,所以密度和光谱反射率之间的相关性可能非常弱。
基于此,为了解决该问题,本研究中提出了基于光谱数据的积雪密度估计混合模型。主要研究目标是利用高光谱NIR成像(PIKA NIR,RESONON Company)(900-1700 nm)以5.5 nm的光谱分辨率测试混合模型(HM)估计季节性积雪密度的性能。混合模型结合了一个分类器和3个与密度类别相关联的特定估算量(弱到中度变质雪(WMM),中度到高度变质雪(MHM)和高度到极高度变质雪(HVM))。利用2018(1.19-3.27)、2019(1.10-4.3)和2020(1.29-3.10)年冬季在加拿大魁北克国立科学研究院(INRS)的科技园内(46°47′43.22″北纬,-71°18′10″西经)收集的数据集校准和验证了HM。混合模型在两个水平进行评估:利用留一法交叉验证(LOOCV)算法和系统划分验证技术(SSV)。LOOCV技术用于评估3个特定估算量,SSV数据用于评估HM性能。4个统计评估指标(决定系数(R2),均方根误差(RMSE),偏差(BIAS)和纳什系数(NASH))用于评估模型的性能。
加拿大魁北克采样区地理位置。
高光谱成像系统。
(a)雪样垂直剖面的高光谱采集;(b)积雪垂直地层空间转换的假彩色RGB图像。
【结果】
3种积雪类别的NIR光谱反射率。
混合模型估计特定估算量的结果;(a)WMM,(b)MHM,(c)HVM。
混合模型特定估算量的LOOCV结果;(a)WMM,(b)MHM,(c)HVM。
利用SSV数据估计区域混合模型。
【结论】
基于多元逐步回归的校准步骤结果表明,3种类型积雪均对不同NIR光谱区域敏感,局限于短波长和长波长。WMM对1265 nm和941 nm的波长敏感,MJM对1617 nm和941 nm的波长敏感,HVN对1424 nm和1188 nm的波长敏感。LOOCV技术强调了所有类别的特定估算量都趋向于略微高估积雪密度(BIAS<0.1 kg·m-3)。当用SSV数据挑战HM时,模型结果令人满意,R2=Nash=0.93,积雪密度略有低估(BIAS=1.03 kg·m-3)。
本研究的目的是开发一种基于积雪光学特性地方法,结合传统密度测量方法以减轻野外作业。利用HM估算积雪密度的关键步骤是最终特定估算量的选择。事实上,分类算法(如CART)是局部且不稳定的。这种不稳定性会显著影响利用HM的特定估算量的密度的准确性。换句话说,对于利用HM的理想建模过程,要建模的样品必须很好地分类,以便使用与该类对应的特定估算量来进行更优密度估计。否则,一个错误的特定估算量将会被选择,从而影响估算精度。例如,对于一个581 kg·m-3的测量密度(分类为HVM),当分别利用HVM,MHM和WMM特定估算量估算时,相对误差变化了5%、39%和75%。另一方面,该方法的另一阻碍是野外和恢复的高光谱图像上均匀积雪层的正确选择。因此,需要进行额外的野外工作来收集更多的数据以克服这一弱点并允许适当的野外实施。HM提供了一种改进工具来监测季节性积雪的演变,即使对于低到中等的积雪密度,其性能也令人满意。该研究结果是开发一种在野外连续监测积雪密度剖面的有效方法的重要一步。
请点击如下链接,阅读原文: