教育装备采购网
第七届图书馆 校体购1

MC1000 8通道藻类培养与在线监测系统部分参考文献名录

教育装备采购网 2019-07-18 15:27 围观1275次

  1.Sengupta A, et al. 2019. The effect of CO2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. Journal of Biotechnology 289: 1-6

  2.Patel A, et al. 2019. Biosynthesis of Nutraceutical Fatty Acids by the Oleaginous Marine Microalgae Phaeodactylum tricornutum Utilizing Hydrolysates from Organosolv-Pretreated Birch and Spruce Biomass. Marine drugs 17(2): 119

  3.Li Y, et al. 2019. Transcriptome analysis reveals regulation of gene expression during photoacclimation to high irradiance levels in Dunaliella salina (Chlorophyceae). Phycological Research, DOI: 10.1111/pre.12379

  4.Zheng Z, et al. 2019. Far red light induces the expression of LHCSR to trigger nonphotochemical quenching in the intertidal green macroalgae Ulva prolifera. Algal Research 40: 101512

  5.Liberton M, et al. 2019. Enhanced nitrogen fixation in a glgX-deficient strain of Cyanothece sp. strain ATCC 51142, a unicellular nitrogen-fixing cyanobacterium. Applied and Environmental Microbiology 85(7): e02887-18

  6.Taparia Y, et al. 2019. A novel endogenous selection marker for the diatom Phaeodactylum tricornutum based on a unique mutation in phytoene desaturase 1. Scientific Reports 9: 8217

  7.Mundt F, et al. 2019. RNA isolation from taxonomically diverse photosynthetic protists. Limnology and Oceanography: Methods 17(3): 190-199

  8.Ferro L, et al. 2018. Subarctic microalgal strains treat wastewater and produce biomass at low temperature and short photoperiod. Algal Research 35: 160-167

  9.Jaiswal D, et al. 2018. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India. Scientific Reports 8:16632

  10.Willamme R, et al. 2018. Surprisal analysis of the transcriptomic response of the green microalga Chlamydomonas to the addition of acetate during day/night cycles. Chemical Physics 514: 154-163

  11.Santos-Merino M, et al. 2018. Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production. Biotechnol Biofuels 11:239

  12.Hagemann M, et al. 2018. The Synechocystis sp. PCC 6803 Genome Encodes Up to Four 2-Phosphoglycolate Phosphatases. Front. Plant Sci. 9:1718

  13.Ilík P, et al. 2018. Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating. New Phytologist 218: 1278–1287

  14.De-Luca R, et al. 2018. Modelling the photosynthetic electron transport chain in Nannochloropsis gaditana via exploitation of absorbance data. Algal Research 33: 430-439

  15.Perozeni F, et al. 2018. LHCSR expression under HSP70/RBCS2 promoter as a strategy to increase productivity in microalgae. International Journal of Molecular Sciences 19(1): 155

  16.Huang JY, et al. 2018. Regulating photoprotection improves photosynthetic growth and biomass production in QC-site mutant cells of the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetica 56(1): 192–199

  17.Varshney P, et al. 2018. Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research 30: 28-37

  18.Bekoe D, et al. 2018. Aerobic treatment of swine manure to enhance anaerobic digestion and microalgal cultivation. Journal of Environmental Science and Health, Part B 53(2): 145-151

  19.Ferro L, et al. 2018. Isolation and characterization of microalgal strains for biomass production and wastewater reclamation in Northern Sweden. Algal Research 32: 44-53

  20.Nagy V, et al. 2018. Water-splitting-based, sustainable and efficient H 2 production in green algae as achieved by substrate limitation of the Calvin–Benson–Bassham cycle. . Biotechnol Biofuels 11:69

  21.Patel A, et al. 2018. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol Biofuels 11:169

  22.Bogaert KA, et al. 2018. Surprisal analysis of genome-wide transcript profiling identifies differentially expressed genes and pathways associated with four growth conditions in the microalga Chlamydomonas. PLoS ONE 13(4): e0195142

  23.Kirsch F, et al. 2018. Inactivation of invertase enhances sucrose production in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 164: 1220-1228

  24.Miazek K, et al. 2017. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresource Technology 230: 122-131

  25.Kämäräinen J, et al. 2017. Pyridine nucleotide transhydrogenase PntAB is essential for optimal growth and photosynthetic integrity under low‐light mixotrophic conditions in Synechocystis sp. PCC 6803. New Phytologist 214: 194–204

  26.Jouhet J, et al. 2017. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLOS ONE 13(10): e0206397

  27.Miazek K, et al. 2017. Effect of enzymatic beech fagus sylvatica wood hydrolysate on Chlorella biomass, fatty acid and pigment production. Applied Sciences 7(9): 871

  28.Vidal‐Meireles A, et al. 2017. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress‐induced response via the VTC2 gene encoding GDP‐l‐galactose phosphorylase. New Phytologist 214: 668–681

  29.Rademacher N, et al. 2017. Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations. Journal of Plant Physiology 217: 49-56

  30.Bernardi A, et al. 2017. Semi-empirical modeling of microalgae photosynthesis in different acclimation states–Application to N. gaditana. Journal of Biotechnology 259: 63-72

  31.Mitchell MC, et al. 2017. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. Journal of Experimental Botany, 68(14): 3891–3902

  32.Nelson DR, et al. 2017. The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization. eLife 6: e25783.

  33.Gandini C, et al. 2017. The transporter SynPAM71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in Synechocystis PCC6803. New Phytologist 215: 256–268

  34.Glemser J, et al. 2016. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology 100(3): 1077-1088

  35.Gérin S, et al. 2016. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii. Front. Plant Sci. 7:1158

  36.Loera‐Quezada MM, et al. 2016. A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae. Plant Biotechnology Journal 14: 2066-2076

  37.Zhang B, et al. 2016. Sustainable production of algal biomass and biofuels using swine wastewater in North Carolina, US. Sustainability 8(5): 477

  38.Alboresi A, et al. 2016. Light remodels lipid biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles. Plant Physiology 171: 2468–2482

  39.Zuliani L, et al. 2016. Microalgae cultivation on anaerobic digestate of municipal wastewater, sewage sludge and agro-waste. International Journal of Molecular Sciences 17(10): 1692

  40.Zhu Y, et al. 2016. A novel redoxin in the thylakoid membrane regulates the titer of photosystem I. The Journal of Biological Chemistry 291: 18689-18699.

  41.Bernardi A, et al. 2016. High-fidelity modelling methodology of light-limited photosynthetic production in microalgae. PLOS ONE 11(6): e0156922.

  42.Minhas AK, et al. 2016. The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresource Technology 211: 556-565

  43.Berteotti S, et al. 2016. Increased biomass productivity in green algae by tuning non-photochemical quenching. Scientific Reports 6: 21339

  44.Varshney P, et al. 2016. Effect of high CO2 concentrations on the growth and macromolecular composition of a heat- and high-light-tolerant microalga. Journal of Applied Phycology 28(5): 2631–2640

  45.Bernardi A, et al. 2016. A model-based investigation of genetically modified microalgae strains. Computer Aided Chemical Engineering 38: 607-612

  46.Du W, et al. 2016. Nonhierarchical Flux Regulation Exposes the Fitness Burden Associated with Lactate Production in Synechocystis sp. PCC6803. ACS Synthetic Biology 6(3): 395-401

  47.Yu J, et al. 2015. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports 5:8132, DOI: 10.1038/srep08132

  48.Grama B S, et al. 2015. Balancing photosynthesis and respiration increases microalgal biomass productivity during photoheterotrophy on glycerol. ACS Sustainable Chem. Eng. DOI: 10.1021/acssuschemeng.5b01544

  49.Davis R W, et al. 2015. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source. Bioresource Technology 198, 577-585

  50.Patzelt D J, et al. 2015. Hydrothermal gasification of Acutodesmus obliquus for renewable energy production and nutrient recycling of microalgal mass cultures. Journal of Applied Phycology, 27(6), 2239-2250

  51.Patzelt D J, et al. 2015. Microalgal growth and fatty acid productivity on recovered nutrients from hydrothermal gasification of Acutodesmus obliquus. Algal Research 10, 164-171

  52.Flowers J M, et al. 2015. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardti. The Plant Cell 27(9), 2353-2369

  53.Makower A K, et al. 2015. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl. Environ. Microbiol. 81(2), 544-554

  54.Vu M T T, et al. 2015. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. Journal of Applied Phycology, doi:10.1007/s10811-015-0722-2

  55.Nikolaou A, et al. 2015. A model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation. Journal of Biotechnology 194, 91-99. DOI: 10.1016/j.jbiotec.2014.12.00

  56.Gris B, et al. 2015. Optimizing biomass and high value compound production in Cyanobacterium aponinum PCC 10605. Societa Botanica Italiana. Venezia.

  57.Gérin S, et al. 2014. Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC Systems Biology 8, 96

  58.Hasan R, et al. 2014. Bioremediation of Swine Wastewater and Biofuel Potential by using Chlorella vulgaris, Chlamydomonas reinhardtii, and Chlamydomonas debaryana. J Pet Environ Biotechnol 5:175. doi: 10.4172/2157-7463.1000175

  59.Šantrůček J, et al. 2014. Stomatal and pavement cell density linked to leaf internal CO2 concentration. Annals of Botany 114, 191-202

  60.Zhang B, et al. 2014. Characterization of a Native Algae Species Chlamydomonas debaryana: Strain Selection, Bioremediation Ability, and Lipid Characterization. BioResources 9(4), 6130-6140

  61.Grama B S, et al. 2014. Induction of canthaxanthin production in a Dactylococcus microalga isolated from the Algerian Sahara. Bioresource Technology 151, 297-305

  62.Grama B S, et al. 2014.Characterization of fatty acid and carotenoid production in an Acutodesmus microalga isolated from the Algerian Sahara. Biomass and Bioenergy 69, 265-275

  63.Miazek K, et al. 2014. Growth of Chlorella in the presence of organic carbon: A photobioreactor study. Conference – Process of Technics 2014 – Prague

点击进入北京易科泰生态技术有限公司展台查看更多 来源:教育装备采购网 作者:北京易科泰生态技术有限公司 责任编辑:方剑波 我要投稿
校体购终极页

相关阅读

  • 易科泰藻类培养与在线监测系统在中国地质大学安装运行

    易科泰藻类培养与在线监测系统在中国地质大学安装运行
    教育装备采购网07-20
    易科泰藻类培养与在线监测系统在中国地质大学水资源与环境学院安装落成并正式运行,用于在精确控制的光照和温度下,实时动态监测环境条件对微藻生物量...
  • MC1000在农业环境与可持续发展研究所安装运行

    MC1000在农业环境与可持续发展研究所安装运行
    教育装备采购网03-06
    农业环境与可持续发展研究所MC1000八通道藻类培养与在线监测系统安装运行MC1000八通道藻类培养与在线监测系统在农科院农业环境与可持续发展研究所安装...
  • FMT150藻类培养与在线监测系统落户中科院植物研究所

    FMT150藻类培养与在线监测系统落户中科院植物研究所
    教育装备采购网08-26
    近日,北京易科泰生态技术有限公司为中国科学院植物研究所成功安装FMT150藻类培养与在线监测系统。这套系统培养体系为1L,配备白/红双色LED光源板(培...
  • 海洋学院藻类培养与在线监测安装运行
    北京易科泰生态技术有限公司10-26
    日前,北京易科泰生态技术公司工程师为浙江海洋学院安装了一套FMT150藻类培养与在线监测系统,计划用于经济藻类的育种及水产养殖生态的研究,培养更加优秀的经济藻种并探索优化水产养殖技术。FM...

版权与免责声明:

① 凡本网注明"来源:教育装备采购网"的所有作品,版权均属于教育装备采购网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:教育装备采购网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:XXX(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

校体购产品