开放式呼吸计(open-flow respirometry)是测量生物能量代谢比较常用的方法,受到世界各国动物生理生态学、生物医学等领域科学家的长久青睐。
北京易科泰生态技术有限公司代理的美国Sable Systems International品牌是世界上专业的动物能量代谢测量技术公司,其产品以高灵敏度、高分辨率等性能应用于很多特殊呼吸模式的野生动物、各种实验动物及经济动物等生物,如具有间歇式呼吸的昆虫、爆发式呼吸的潜水动物、特定行为代谢的野生及实验动物等,并有大量的研究文献及实验方法、案例供参考。
本案例仅有美国乔治福克斯大学知名的动物能量学实验室Powers Research Lab ~ Studies in Animal Energetics (http://www.dpowerslab.com/) 研究蜂鸟、蛇及蜥蜴为案例介绍动物能量学测量技术,包括针对不同的研究动物,选择不同的SSI呼吸代谢监测模块,以及特殊呼吸室的制作。
蜂鸟是世界上最小的鸟,体重甚至不足2克,能够通过快速拍打翅膀而悬停在空中,也是是唯一可以向后飞的鸟。为维持极速飞行、上下翻飞、高速俯冲等日常活动,蜂鸟的能量消耗及食物利用效率是非常惊人的。
作为动物能量学研究特别是蜂鸟代谢研究的权威机构,dpowerslab实验室选购了不同的SSI动物呼吸代谢监测系统以满足不同动物研究的需要,如FOXBOX-C便携式气体分析仪,可直接带到野外测量动物的代谢率;Field Metabolic Systems便携式动物代谢仪,可监测动物能量代谢及水代谢;SSI模块式动物呼吸代谢测量系统,可根据研究目的,选择不同的差分式氧气分析仪、高灵敏度及分辨率的温度检测仪等模块,研究动物在不同行为状态时的能量消耗。呼吸室的灵活性选择使得SSI便携式、模块化代谢测量系统可以研究从单只果蝇到大型鲸鱼的能量学研究。
以下为dpowerslab实验室用于蜂鸟、蛇类及蜥蜴的SSI便携式及模块式动物代谢测量系统的图片展示:
FOXBOX-C便携式气体分析仪(研究者:Luke Andrew)
使用实时代谢监测仪研究自由活动鸟类悬停代谢率
FMS便携式代谢测量,FOXBOX的升级版,用于动物能量投入与水代谢监测
蜂鸟高速俯冲等行为与能量消耗
dpowerslab实验室最高级别的代谢监测分析仪(负责人:Kyle Maki)
dpowerslab实验室选配该系统用来研究未知气流对星蜂鸟悬停能量学的影响
dpowerslab实验室动物代谢监测系统(研究者:Luke Andrew)
定制的蜂鸟呼吸室
呼吸室内的蜂鸟
蜂鸟悬停在空中的呼吸室
糖水及蜂蜜放在蜂鸟喂食器(气候变化与蜂蜜、蜂鸟花蜜代谢研究)
Dpowerslab研究者正在制作蛇类代谢监测呼吸室(研究者:Paige Copenhaver)
需要说明的是,Sable Systems International动物呼吸代谢监测系统是世界上动物能量代谢研究使用最普遍的仪器,也是国际动物生理学权威专家一致推荐的产品。
如果您对测量特定物种的能量代谢技术感兴趣,请致电北京易科泰生态技术有限公司010-82611572,我们竭诚为您定制适合您科学研究的最佳方案。
2015年部分参考文献:
Baldo M B, Antenucci C D, Luna F. Effect of ambient temperature on evaporative water loss in the subterranean rodent Ctenomys talarum[J]. Journal of thermal biology, 2015, 53: 113-118.
Carey C S, Boyles J G. Interruption to cutaneous gas exchange is not a likely mechanism of WNS-associated death in bats[J]. The Journal of experimental biology, 2015: jeb. 118950.
Cortés P A, Petit M, Lewden A, et al. Individual inconsistencies in basal and summit metabolic rate highlight flexibility of metabolic performance in a wintering passerine[J]. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2015, 323(3): 179-190.
DeMambro V E, Le P T, Guntur A R, et al. Igfbp2 deletion in ovariectomized mice enhances energy expenditure but accelerates bone loss[J]. Endocrinology, 2015, 156(11): 4129-4140.
Friesen C R, Powers D R, Copenhaver P E, et al. Size dependence in non-sperm ejaculate production is reflected in daily energy expenditure and resting metabolic rate[J]. The Journal of experimental biology, 2015, 218(9): 1410-1418.
Gavrilov V M. The stoichiometric approach in determining total evaporative water loss and the relationship between evaporative and non-evaporative heat loss in two resting bird species: passerine and non-passerine[J]. Avian Research, 2015, 6(1): 1.
Goundie E T, Rosen D A S, Trites A W. Low prey abundance leads to less efficient foraging behavior in Steller sea lions[J]. Journal of Experimental Marine Biology and Ecology, 2015, 470: 70-77.
Levin E, Plotnik B, Amichai E, et al. Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2015, 282(1804): 20142781.
Londo?o G A, Chappell M A, Casta?eda M R, et al. Basal metabolism in tropical birds: latitude, altitude, and the ‘pace of life’[J]. Functional Ecology, 2015, 29(3): 338-346.
Mathot K J, Nicolaus M, Araya‐Ajoy Y G, et al. Does metabolic rate predict risk‐taking behaviour? A field experiment in a wild passerine bird[J]. Functional Ecology, 2015, 29(2): 239-249.
Motyl K J, DeMambro V E, Barlow D, et al. Propranolol attenuates risperidone-induced trabecular bone loss in female mice[J]. Endocrinology, 2015: en. 2015-1099.
Powers D R, Getsinger P W, Tobalske B W, et al. Respiratory evaporative water loss during hovering and forward flight in hummingbirds[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2012, 161(2): 279-285.
Schaeffer P J, Komer M C, Corder K R. Energy savings due to the use of shallow body temperature reduction in overwintering Northern Cardinals[J]. Animal Biotelemetry, 2015, 3(1): 1.
Shipley J R, Gu D Y, Salzman T C, et al. Heterothermic flexibility allows energetic savings in a small tropical swift: The Silver-rumped Spinetail (Rhaphidura leucopygialis)[J]. The Auk, 2015, 132(3): 697-703.
Stawski C, Koteja P, Sadowska E T, et al. Selection for high activity-related aerobic metabolism does not alter the capacity of non-shivering thermogenesis in bank voles[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 180: 51-56.
Stuber E F, Mathot K J, Kempenaers B, et al. Sex-specific association between sleep and basal metabolic rate in great tits[J]. Animal Behaviour, 2015, 109: 15-22.
Thienel M, Canals M, Bozinovic F, et al. The effects of temperature on the gas exchange cycle in Agathemera crassa[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 183: 126-130.
Thompson L J, Brown M, Downs C T. Seasonal metabolic variation over two years in an Afrotropical passerine bird[J]. Journal of Thermal Biology, 2015.
Thompson L J, Brown M, Downs C T. The effects of long-term captivity on the metabolic parameters of a small Afrotropical bird[J]. Journal of Comparative Physiology B, 2015, 185(3): 343-354.
Trangmar S J, Chiesa S T, Llodio I, et al. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2015, 309(9): H1598-H1607.
Welch K C, Otálora-Ardila A, Flores-Martínez J J. The cost of digestion in the fish-eating myotis (Myotis vivesi)[J]. The Journal of experimental biology, 2015, 218(8): 1180-1187.
Williams T M, Fuiman L A, Davis R W. Locomotion and the Cost of Hunting in Large, Stealthy Marine Carnivores[J]. Integrative and comparative biology, 2015: icv025.
Wolf B, Gilman C. The Burden of Reproduction in Lizards: Changes in Respiratory Physiology Associated with Reduced Lung Volume at the Sevilleta National Wildlife Refuge[J]. 2015.